Terascale direct numerical simulations of turbulent combustion — fundamental understanding towards predictive models

نویسندگان

  • D O Lignell
  • J H Chen
  • E S Richardson
چکیده

Advances in high-performance computational capabilities enable scientific simulations with increasingly realistic physical representations. This situation is especially true of turbulent combustion involving multiscale interactions between turbulent flow, complex chemical reaction, and scalar transport. A fundamental understanding of combustion processes is crucial to the development and optimization of next-generation combustion technologies operating with alternative fuels, at higher pressures, and under less stable operating conditions, such as highly dilute, stratified mixtures. Direct numerical simulations (DNS) of turbulent combustion resolving all flow and chemical features in canonical configurations are used to improve fundamental understanding of complex flow processes and to provide a database for the development and validation of combustion models. A description of the DNS solver and its optimization for use in massively parallel simulations is presented. Recent DNS results from a series of three combustion configurations are presented: soot formation and transport in a nonpremixed ethylene jet flame, the effect of fuel stratification in methane Bunsen flames, and extinction and reignition processes in nonpremixed ethylene jet flames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent rea...

متن کامل

Direct Numerical Simulation of Turbulent Counterflow Nonpremixed Flames

This paper presents our recent progress in terascale three-dimensional simulations of turbulent nonpremixed flames in the presence of a mean flow strain and fine water droplets. Under the ongoing university collaborative project supported by the DOE SciDAC Program [1] along with the INCITE 2007 Project [2], the study aims at bringing the state-of-the-art highfidelity simulation capability to th...

متن کامل

Terascale direct numerical simulations of turbulent combustion using S3D

Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at h...

متن کامل

Small scales, many species and the manifold challenges of turbulent combustion

Amajor goal of combustion research is to develop accurate, tractable, predictive models for the phenomena occurring in combustion devices, which predominantly involve turbulent flows. With the focus on gasphase, non-premixed flames, recent progress is reviewed, and the significant remaining challenges facing models of turbulent combustion are examined. The principal challenges are posed by the ...

متن کامل

Direct Numerical Simulations of Turbulent Spray Combustion: Behavior of Scalar Dissipation Rate By Abouelmagd Abdelsamie

Scalar dissipation rate is an essential parameter in combustion theory; understanding its behavior is necessary for developing and improving combustion models. In most cases, the scalar dissipation rate shows different trends under different combustion conditions, and it is thus case-dependent. Spray combustion is categorized as a partially-premixed combustion system, leading to very complex pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008